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Abstract—Unlike static gesture recognition, a novel real-time 

gesture prediction system in this study can judge the intention of 

hand motion and predict the exact final gesture before the end of 

hand movement. Flex sensors are used to measure comprehensive 

motion data of data glove, which are positioned based on the 

biological muscle distribution characteristics of the hand. 

Position, velocity and acceleration information are extracted 

from raw data of data glove, while the adjacent finger-coupling 

features are also obtained by processing the position and velocity 

information. After data processing such as windowing and 

filtering, accuracy and effectiveness experiments are conducted 

to obtain the ideal features based on multimodal fusion. A 

combination of neural network and multiclass support vector 

machine (SVM) algorithms are used as prediction model. Neural 

network experiments are designed in which prediction time and 

accuracy are used as the optimization index to select the 

combination structure of the prediction model.  

Keywords—Gesture Prediction; Multimodal Fusion; Neural 

Network; Multiclass SVM; Flex sensors; Data glove 

I.  INTRODUCTION 

As an effective and natural interface, human gesture 
recognition is widely used in interaction between humans and 
computational systems. Applications various from interaction 
with robotics [1,2] to sign language recognition [3], Mori et al. 
[4] pointed out that a real-time gesture recognition system had 
to be able to predict the gesture that is being executed before it 
ends. Gesture prediction has obtained an increasing amount of 
attention in pattern recognition and real-time systems. A few 
studies use the prediction concept gesture prediction, as 
described by Liu and Xiao [3]. In recent years, many studies 
were conducted by using digital camera [5] or depth sensors 
which provide three-dimensional depth data of the scene, such 
as Leap Motion controller [6] and Microsoft Kinect sensor 
[7,8]. However, some problems remain in the computer vision 
for gesture prediction, like significant computational and time 
costs for the algorithms [9]. Additionally, visual occlusion also 
affects the performance of gesture prediction based on vision 
system. Meanwhile, systems based on gloves or external 
sensors can effectively avoid the visual occlusion and high 
time costs. 

Preetham et al. [10] presented a gesture recognition glove 
prototype, while Jadhav, Joshi et al. [11] presented wearable 
sensing gloves along with flex sensors to determine four words 
in Indian sign language. But most of them focus on the static 
gesture recognition instead of gesture prediction. Our study 
combines the advantage of data glove and gesture prediction. 

To make the prediction more effective and reliable, we 
proposed a novel embedded data glove real-time prediction 
system with multimodal fusion method and neural network 
prediction model, which replaces the traditional logical 
classification models such as if-else judgement or single 
traditional state estimation based on position [12]. Thus, the 
study in this paper of gesture prediction based on data glove is 
quite meaningful. 

A significant amount of work on combining diverse feature 
types was applied to object and action recognition [13]. We use 
various data channels to describe each gesture at multiple 
scales not only spatially, but also temporally, during feature 
extraction to provide context for neural network gesture 
prediction. 

In most practical applications, the late fusion of scores 
output by several models offers a cheap and surprisingly 
effective solution [14]. We use time cost and accuracy as 
optimization index to select the best combination of neural 
networks and obtain a prediction model. 

II. SYSTEMATIC FRAMEWORK 

The systematic framework of the proposed method (shown 
in Fig. 1) includes three steps: 1. Sensor location and data 
collection, 2. Multimodal fusion and feature extraction, and 3. 
Real-time prediction system. 

 

Fig. 1. The systematic framework 

A. Sensor Location and data collection 

Position, precision and working condition of each flex 
sensor are specifically measured in data glove. First, studying 
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the biological characteristics of hand muscle helps to determine 
the exact direction of the moving joints of each finger and 
muscles. The flex sensors should coincide exactly with the 
flexor digitorum (shown in Fig. 2), especially the thumb. 
Adding the flex sensor in the vertical direction of the 
connection between aponeurosis palmaris and thenar can 
collect the palm movement. Hence, a total of six flex sensors 
an Arduino board and a wireless module are located on the data 
glove to collect the real-time raw movement of the hand. 
(shown in Fig. 3) 

 

Fig. 2. The biological characteristics of the hand 

 

Fig. 3. The physical map of data-glove 

We built hand gestures datasets, Flex-Gesture dataset, 
concluding sixteen common gestures: “scissor”, “rock”, “like”, 
“ok”, et, details are shown in Fig. 4. Each class of gesture 
contains 3000 six-dimension flex data for each sampling 
moment during the movement of hand. The flex data have 
corresponding labels, which can be used to training or testing 
machine learning algorithms. 

 

Fig. 4. Illustrations of the sixteen hand gestures from the Flex-Gesture dataset. 

Left to right, top to bottom: one, three, four, six, seven, eight, little, German3, 
hold, like, ok, rock, scissor, paper, thumb, ring, yang et. 

B. Feature Extraction and Multimodal Fusion 

The data glove collects real-time position information of 

fingers movement and the bend of the palm, which conveys 

the spatial dimension. To extract more temporal information 

from the measured data, we calculate the relationship feature 

between the data as it various over time, the velocity and 

acceleration of each finger, and to make our system more 

stable, use the moving average method to smooth the velocity. 

Gaussian white noise is used for data augmentation, enlarging 

the dataset. 

Velocity and acceleration of each finger calculation: To 

avoid the outliers and ensure the stability, we calculate the 

velocity of one moment with every six sampled data, while 

acceleration with four velocity data. 
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Where P is the position data collected from the flex sensors 

in data glove. The subscript j represents different moments, 

while l is the specific number of flex sensors. 

Moving average method (equal to the low-pass filter): We 

select a window of a specific size, compute the average of all 

values in the window, and use the average as the center point 

of the window. This method is used to preprocess the velocity 

and acceleration of each finger, with a window of size 11, the 

context information is combined into the velocity iV and 

acceleration ia
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Where the width of the window is n+1. 

Multimodal fusion with spatial, temporal and finger-

coupling channels: Combine the flex sensor data and its 

velocity, such that every point of time corresponds to a 

multimodality vector. Use the adopt min-max method to scale 

the vector. 
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To describe the interaction between adjacent fingertips, we 

propose double-finger features [15]. Eq.4 shows the absolute 

bend finger-distances between adjacent fingertips. 
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M is the range of finger positions. Note that, dividing 

by M normalizes the absolute bend fingertip-distance to the 

interval [0, 1]. Adjacent finger-distance features distinguish 

between the different types of interactions between adjacent 

fingertips. Position of each finger and palm reflect the spatial 

features, while velocity and acceleration reflect the temporal 

features, and finger adjacent coupling features are also 

calculated. The combination of these three different feature 

channels form a multimodal fusion. 

With the method above, the six-dimension data in Flex-

Gesture dataset is enlarged into n-dimension data, containing 

more feature channels: n=6, position(P); n=12, position + 

velocity(PV); n=18, position + velocity + acceleration (PVA). 

If the adjacent finger information included, the dimension of 

feature vector n doubled. 

C. Real-time Prediction System 

The prediction system used in this study is similar to the 

previous description. The proposed architecture is shown in 



Fig. 5. Each sampling time is individually preprocessed and 

used as input for feature extraction. Each sampling time has its 

features extracted independently. After the multimodal fusion, 

the ideal feature structure is confirmed. The prediction system 

should guarantee the time cost for making a prediction is less 

than the time from the initial to final gesture position. When 

the hand starts moving from the initial position to complete 

the rock gesture, the raw data collected by data glove were 

used as input to the feature extraction algorithm, which 

generates multimodal fusion feature vectors to be employed in 

the prediction model. To avoid the outliers, each of the five 

features form a group. A boosting method is used to obtain a 

middle prediction gesture as the output of each feature group.  

 

 
Fig. 5. Prediction system architecture 

The middle prediction gesture is placed on the bottom of 

tank, where the capability of it depends on the tank length. 

When the tank is full, all of the middle prediction gestures in 

the tank are sent for judgement. After the process of 

judgement, we obtain the predicted gesture. The judgement 

algorithm is as follows. The parameter tank length is adjusted 

to eliminate the influence of the interim period before the 

extractive feature can represent the typical changing 

characteristics of the gesture. 

 

Algorithm 1 Judgement algorithm 

Input: Mid-Pre-gestures in Tank 

Output: prediction gesture 

While Tank full ==True 

Get the prediction gesture (class) with maximum 

number in Mid-Pre-gesture 

If prediction gesture==start gesture 

      Clean all the Mid-Pre-gesture in Tank 

Else 

      Return prediction gesture 

 

To describe the prediction model, a multilayer perceptron 

(MLP) neural network and multiclass support vector machine 

(SVM) are combined to form the prediction algorithm. 

1. Multilayer perceptron 

A n-hidden-layer Multilayer perceptron(MLP) is used with 

input vector 
1 2 3[1, , , ,..., ]mx x x x x and weight 

0 1 2 3[ , , , ,..., ]nW      in first hidden layer, where m  is the size 

of input vector, n is the neural number of hidden layer 

and 0 is the bias. The output vector ( )f x in matrix notation: 
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Activation functions of hidden layer use the function 

which accelerate the computation speed of forward 

propagation, is defined as follows: 

Re (a) max(0,a)lu                            (8) 

G as the softmax function to achieve the multi-class 

classification. 
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The coding method of output is one-hot. We use the cross-

entropy cost function while training the parameters, y is the 

ideal output, a is the real output: 
1
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n
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2. Support vector machine 

The objective function is: 

max(1/ || ||) . ., ( ) 1, 1,...,T
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Using Lagrange multiplier α to transfer the question into 

dual variable optimizer question. Merge the constraint 

condition into the objective function, where w and b are the 

weight and bias respectively: 

2

1

1
( , , ) ( ( ) 1)

2

n
T

i i i

i

L w b w y w x b 


           (12) 

To solve the nonlinear task and simplify the calculation, 

Kernel function is used: 
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There are different kernel function kernel function 

( , )i jx x
,  and Eq.14 is Gaussian RBF kernel (rbf), while 

Eq.15 is polynomial kernel function (poly).  
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To achieve the multiclass prediction, we try “one-verse-

rest” (ovo) and “one-verse-rest” (ovr) methods [16]. We also 

explore different kinds of kernels of SVM to combine the 

MLP as the combined neural network to obtain prediction 

model in experiments [17]. Following are the combining 

algorithm. 

 
Fig. 6. Structure of combining algorithm 



P(p1…pn) are confidence values extracted from the MLP, 

which represent the probability of the features belonging to 

each class of gesture, while Q(q1…qn) is extracted from the 

SVM, where Wp + Wq = 1, which represent the weight of 

MLP and SVM separately. 

III. EXPERIMENTS AND RESULTS 

The accuracy and effectiveness experiments are executed in 
using the Flex-gesture dataset and the enlarged n-dimension 
data. We use two machine learning algorithms, SVM and MLP, 
for the classification model. For SVM, we use the Gaussian 
RBF kernel and ‘one vs rest’ method. The sigma value of RBF 
kernel is 0.1. For MLP, we use three hidden layers MLP with 
50, 25 and 18 hidden units in each hidden layer. After 
determining the training model, we tested three feature vectors 
based on the criterion of computational cost and accuracy, and 
determine the best one. The feature vectors were position(P), 
position + velocity(PV) and position + velocity + acceleration 
(PVA). The output of the two models were identical, with 17 
units representing the 17 classes of hand gestures.  

The models trained with different kind of feature vector, 
different machine learning algorithm, with single finger feature 
was tested by the test dataset, Fig. 7. summarizes the prediction 
performance of each feature vectors. 

 

Fig. 7. Gesture prediction experiment results with single finger feature 

Fig. 7 illustrates that PV feature significantly improves the 
accuracy of prediction from 82.47% to 90.31% with middle 
computational time based on SVM. The result shows that the 
velocity information is a very important factor to predict the 
gesture, but when the acceleration information is added to the 
feature, the improvement was limited, from 90.31% to 90.33% 
with SVM. In addition, the computational cost of the PVA 
feature vector (18 dimensions) was 1.5 times larger than the 
PV feature vector (12 dimensions), which significantly 
increases the computation cost, but slows down the prediction. 

We repeated the experiment by adding the adjacent finger 
information to the feature vector, which double the dimension. 
Fig. 8 summarizes the prediction performance of each feature 
vectors. 

 

Fig. 8. Gesture prediction experiment results with adjacent finger feature 

Fig. 8 shows that adding the adjacent finger information 
significantly improves the accuracy, when the SVM+PV 
features are chosen, it improves the accuracy from 90.31% to 
93.61%. Therefore, it is helpful in distinguishing between 
different types of interactions between adjacent fingertips. All 
in all, each finger’s position and palm’s position reflect the 
spatial features, while temporal features are reflected by 
velocity and acceleration. The combination of these three 
different feature channels form a multimodal fusion. Finally, 
we adopt the adjacent PV as the ideal feature vector. 

To select the optimal prediction model, we combine the 
different MLP and multiclass SVM algorithms to explore the 
ideal prediction model, using the time cost and accuracy as the 
evaluating indicator to adjust the parameter of the prediction 
model. 

In experiment, the kernel of SVM are polynomial kernel  
(poly) and Gaussian RBF kernel (rbf), where one verse one 
(ovo) and one verse rest (ovr) methods are used. The structure 
of MLP are three hidden layers and the size of hidden layers 
are 50, 25, 18 respectively (MLP(3)), and four hidden layers 
with the size of hidden layers are 50, 25, 18, 16 respectively 
(MLP(4)) . Time represent the prediction time of each moment. 

TABLE I.  EXPERIMENT RESULTS FOR DIFFERENT PREDICTION MODEL 

Prediction model Accuracy(%) Time(ms) 

MLP(3) 93.45 0.2315 

MLP(4) 94.52 0.2329 

SVM ovr rbf  95.20 0.0444 

SVM ovo rbf 95.18 0.0444 
SVM ovr poly 94.68 0.0272 

SVM ovo poly 94.67 0.0272 

SVM ovo rbf + MLP(3) 96.52 0.2315 

SVM ovr rbf + MLP(3) 97.21 0.2315 

SVM ovo poly + MLP(3) 96.50 0.2315 

SVM ovr poly + MLP(3) 96.51 0.2315 

SVM ovo rbf + MLP(4) 98.29 0.2329 
SVM ovr rbf + MLP(4) 98.17 0.2329 

SVM ovo poly + MLP(4) 97.22 0.2329 

SVM ovr poly + MLP(4) 97.21 0.2329 

 

Table I illustrates that the prediction speed of both RBF 
kernel SVM and polynomial kernel SVM are very fast with 
cost time 0.0444 millisecond (ms) and 0.0272 ms respectively. 
The prediction speed of MLP is also fast with cost time 0.2315 
ms (MLP (3)) and 0.2329 ms (MLP (4)). The combined 
prediction model has nearly the same speed with MLP only. 
The accuracy of only SVM, 95.20% with RBF kernel and ovr 



method, is better than only MLP, 94.52% with 4 hidden layers. 
After combining different multiclass SVM and MLP 
algorithms, the accuracy significantly improved, where the 
SVM ovo, rbf + MLP (4) combined model had the highest 
prediction accuracy 98.29%. Because time cost is quite short 
which have little influence of prediction. Finally, we choose the 
highest accuracy combination, SVM ovo, rbf + MLP (4), as the 
prediction model. 

To test the feasibility and performance of the prediction 
system proposed in this paper. We developed a graphical 
interface based on Python for gesture prediction. By measuring 
the bend of flex sensors, the embedded hardware platform 
makes the data acquisition, and transmits the data to the host 
computer wirelessly for data preprocessing based on 
multimodal fusion, converted into a set of features on the 
behave of the hand movements, then the prediction system uses 
extracted features to predict the gesture before the action ends. 
Fig. 9, Fig. 10, Fig. 11 are the gesture prediction example 
results in the experiments. 

 

Fig. 9. Gesture “like” real-time prediction 

 

Fig. 10. Gesture “rock” real-time prediction 

 

Fig. 11. Gesture “scissor” real-time prediction 

IV. DISCUSSION 

Data processing methods form extraction features from the 
raw flex data. To combine both spatial and temporal channels, 
we extract the hidden features from the data, such as the 
velocity and acceleration. And the adjacent finger distance, 
which distinguishes between the different types of interactions 
between adjacent fingertips. Experiment results show that they 
are useful features to predict the next gesture position in next 
time. When evaluating the model using the PVA parameter in 
the flex-gesture dataset, our prediction model worked no better 
than the system using PV parameters. However, the 
computational cost of the PVA feature vector (18 dimensions) 
was 1.5 times larger than the PV feature vector (12 
dimensions). In consideration of computational cost and 
accuracy, we chose the adjacent PV parameters as our ideal 
feature vector. 

From the results of the prediction model experiment, cost 
time and accuracy are considered as the optimization index. 
The cost time of prediction modal play an important role in 
entire prediction time of prediction system. The experiment 
results show the cost time of prediction model can be neglect 

compared with the gesture time from initial to the end, which 
approximately 5 to 6 seconds. Thus the accuracy is the most 
concern to select the combination of prediction model. SVM 
ovo, rbf + MLP (4) combined model had the highest prediction 
accuracy 98.29% with 0.2329 ms cost time. 

V. CONCLUSION 

The proposed system uses three modules based on data 

glove to predict incomplete gestures before the data of entire 

process has been captured: sensors data collection, feature 

extraction based on multimodal fusion, and real-time gesture 

prediction. Data glove contains six flex sensors, an Arduino 

board, and a wireless module. Biological characteristics of 

hand muscle distribution guide the position and direction of 

flex sensors on each finger as well as palm, which collect 

exact spatial information. For data preprocessing, we perform 

data augmentation to obtain larger training datasets, and 

calculate the temporal information, bending velocity and 

acceleration, and the adjacent coupling information, adjacent 

distance between fingers. To avoid instability, the moving 

average method, a type of low-pass filter is used. The 

multimodal fusion method obtains the ideal feature vector. 

The experimental results show that adjacent PV feature vector 

has the highest accuracy. The gesture prediction algorithm 

guarantees the fast prediction using an SVM and MLP-

combined model. The combination method was evaluated, and 

the results showed that SVM ovo, rbf and MLP-combined 

model has 98.29% prediction accuracy, consuming only 

0.2329 ms. The feasibility experiment with graphical interface 

and host computer shows that the prediction system in data 

glove can make fast and accuracy prediction application. 

The proposed structure has some limitations because of 

the lack of time dimension. In the future, we plan to try 

different deep learning algorithms which can process the data 

in time domain, combining time dimension into multimodal 

fusion. Using more powerful hardware may accelerate the 

speed of predicting, besides, obtain more reliable results. 
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