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ABSTRACT 

Computerized breast cancer diagnosis system has played an 

import role in early cancer diagnosis. For this purpose, we apply 

deep learning by using convolutional neural networks (CNN) to 

classify abnormalities, benign or malignant, in mammographic 

images based on the mini Mammographic Image Analysis Society 

(mini-MIAS) database. Accuracy, sensitivity, and specific values 

are observed to evaluate the performance of the CNN. To improve 

the performance, we utilize image-preprocessing methods 

containing cropping, global contrast normalization, augmentation, 

local histogram equalization, and balancing preprocessing. We 

built four CNN models to study the impact of depth and hidden 

layer structure on model performance. The CNN-4d model 

performs best among four proposed CNN models consisting of 

four convolution layers with a dropout of 0.7. The CNN-4d model 

achieved a balance of high sensitivity (90.63%) and high 

specificity (87.67%), and an accuracy of 89.05%. The result of 

this study indicates that CNNs have promising potential in the 

field of intelligent medical image diagnosis. 
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1. INTRODUCTION 
Breast cancer is the second leading cause of death among women. 

According to a World Health Organization (WHO) report, breast 

cancer accounts for 22.9% of diagnosed cancers and 13.7% of 

cancer-related deaths worldwide [1]. Detection of breast cancer in 

its early stages dramatically increases the chances of a successful 

treatment plan [2]. The development of computer-aided diagnosis 

systems (CADs) that can assist medical personnel with the early 

detection of tumors serves as a crucial alternative. In such systems, 

a high reliability in the accuracy of the classifier is a top priority 

[3]. 

Thanks to recent developments, convolutional neural networks 

(CNN) have become one of the most popular methods for image 

classification and a driving force behind deep learning. Many 

researchers have studied mammogram classification using CNN 

models, and obtained significant results. Gallego-Posada, et al. [4] 

demonstrated an application of CNN for the detection and 

diagnosis of breast tumors. The Mammographic Image Analysis 

Society (MIAS) database was used, and 64.52% test accuracy was 

achieved. Jadoon, et al. [5] proposed a model that uses two 

methods, namely CNN-DW and CNN-CT, to classify results as 

normal, malignant, and benign. Using the IRMA dataset, the 

model achieved accuracy rates ranging from 81.83%-83.74%.  

In this study, we proposed a CADs, including a preprocessing 

method and supervised classification method. In the classification 

method, a novel CNN model is proposed to classify abnormalities 

and benign or malignant tumors. The high accuracy and other 

outstanding evaluating indicator shows the CNN outperforms high 

performance as the key step in our mammography CADs. To 

improve performance of the classifier, we focused on image 

preprocessing, which is specifically suitable for the 

mammographic image and structure of CNN models. Our data 

source is the mini Mammographic Image Analysis Society (mini-

MIAS) database [6]. The mini-MIAS database contains valuable 

information such as the location of the center of abnormality and 

radius of the circle that surrounds the abnormality. This 

information was used to crop the original image and prepare the 

data by cropping the region of interest (ROI). In addition, we built 

four CNN models to study the influence of the CNN structure on 

model performance. 

The remainder of this paper is organized as follows. In section 2, 

we provide details about our methodology for preprocessing data 

and the structure of CNN. In section 3, we describe the 

experiment performed and results obtained. Finally, section 4 

concludes this work. 

2. MATERIALS and METHODS 

2.1 Dataset 
In this study, we test the performance of CNNs to classify the 

exact breast abnormalities that are obtained from mammograms. 

Our data source is the mini-MIAS database, which consists of 323 

mammogram images, each of size 1024x1024 pixels. In the MIAS 

database, mammogram images are divided into three classes: 

glandular dense, fatty, and fatty glandular. Each class is 

subdivided into images of normal, benign, and malignant tissue. 

Each abnormal image, either benign or malignant, has a type such 
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as calcification, mass, and asymmetry. A total of 207 normal 

images and 116 abnormal images (64 benign and 52 malignant) 

were obtained. In this study, we only use the abnormal images in 

the dataset to classify the benign and malignant classes. 

2.2 Proposed method 
Fig.1 presents an overall view of the proposed method, 

comprising two main stages: preprocessing and supervised 

training. The preprocessing stage prepares the data in the ROI 

through a set of transformations, so that the next stage takes 

advantage of relevant characteristics in the ROI. Supervised 

learning in the second stage involves two processes: feature 

learning and classification training. Both are performed by 

training a CNN. The convolution layers and   pooling layers 

extract the features, while the back propagation (BP) algorithm 

updates the parameters in the hidden layers to achieve feature 

learning. In addition, the fully connected layers and the last 

softmax layer create the final classification based on the extracted 

features mentioned above. We note that the two processes are in 

the supervised stage, since the CNN training is guided by the 

labeled samples. 

 

Figure 1. Workflow diagram of the proposed method. 

2.2.1 Preprocessing 
Preprocessing is a common stage in CADs that enhances the 

characteristics of the image by applying a set of transformations to 

improve performance. We apply cropping, global contrast 

normalization, augmentation, local histogram equalization, and 

balancing preprocessing to the datasets and show their effects on 

the accuracy of the final classification. 

2.2.1.1 Double cropping and global contrast 

normalization 
The first crop of each image eliminates black spaces and useless 

noise in the mammogram image, such as patients information and 

icons. After the first crop, the global contrast normalization (GCN) 

is conducted. Due to the digitalization process, the lighting 

conditions between different film images will be different, which 

affects all pixel values of the image. A GCN eliminates this effect 

by subtracting the mean of the intensities in the image from each 

pixel. Because the mean is of the image instead of each pixel, it 

can be subtracted without determining whether the current image 

belongs to the training, validation, or test set [7]. 
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The second crop classifies a previously identified ROI in the 

entire film image after GCN. Using the smaller sizes of images, 

the ROI reduces training time. In the mini-MIAS dataset, each 

image provides valuable information about the type of 

abnormality, the coordinates of abnormality, and the approximate 

radius of the circle surrounding the abnormality. The abnormal 

ROI of each abnormal image is extracted using the x and y-

coordinates of the center of the abnormal images and radius r. 

We fixed the input size to ROIs of (2r, 2r) pixels. With this, ROIs 

can be easily extracted using the bounding box of the segmented 

region. Specifically, ROIs were cropped to the square bounding 

box of the lesions and reshaped to (2r, 2r) pixels. The ROIs area is 

greater than that of circle with radius r, so the lesion is centered 

with scaling and the surrounding region is preserved. And the 

diagram of preprocessing is shown in Fig. 2. 

 

Figure 2. Diagram of preprocessing (a) origin image (b) image 

after first crop and global contrast (c) ROI after second crop 

(d) ROI after local histogram equalization 

2.2.1.2 Augmentation 
Data augmentation is often used in the context of deep learning 

and refers to the process of generating new samples from existing 

data, which is used to ameliorate data scarcity and prevent 

overfitting [8]. Transformations include rotations, translations, 

horizontal and vertical reflections, crops, zooms, and jittering. For 

tasks such as optical character recognition, Simard et al. [9] 

showed that elastic deformations can greatly improve 

performance. The main sources of variation in mammography at 

the lesion level are rotation, scale, translation, and amount of 

occluding tissue.  

We propose a argument algorithm that is more suitable for each 

resultant mammogram, with the following characters: single-

channel, low-contrast, small area-of-interest, and slow change in 

texture gradient. We augmented all positive examples with scale 

and translation transformations. Full scale or translation 

invariance is not desired nor required, since the candidate detector 

is expected to find a patch centered on the actual focal point of the 

lesion. The key is to perform the proper amount of translation and 

scaling, to generate realistic lesion candidates. The algorithm 

provides three options for data argumentation. First, flipping and 

rotating angle (including horizontal and vertical flipping) is 

widely used. Rotations transformations of 0, 90, 180, 270 can be 

used, which avoid the existence of points outside the boundaries. 

Second, by centering the ROI range, Δx and Δy are the difference 

of the ROI center and lesion center provided in the MIAS label. 

Variations Δx and Δy identify the translation of lesions in the ROI. 

Finally, the scaling ratio, enlargement, and reduction of the lesion 

area in the ROI can adjust the area of the surrounding region, 

which may preserve more texture and contrast information. By 

combining different argumentation method, every lesion can be 

shown in any specific orientation, up to 32 times, and 

argumentation-realistic lesion candidates can be obtained to 

eliminate the overfitting problem. Examples of images after 

translation augmentation are given in Fig. 3. 



 

Figure 3. Examples of images after translation augmentation 

2.2.1.3  Local histogram equalization 
A histogram equalization process is conducted to prepare data for 

learning algorithms. It is widely known that feature learning and 

deep learning methods usually perform better when the input data 

has some properties such as decorrelation and normalization, 

mainly because such properties help gradient-based optimization 

techniques to converge [10]. The probability density function 

(PDF) both before and after the histogram equalization is ( )rp r

and ( )sp s , and s is the transform function. 
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2.2.1.4 Balancing Data 
There were only 51 malignant mammograms among 116 

abnormal images in mini-MIAS. Therefore, the number of benign 

images was greater than malignant ones in our datasets. Those 

datasets are referred to as imbalanced datasets, which may 

negatively affect classification of the minority class (i.e., 

abnormal images). To address this, we use different time 

argumentations on benign and malignant mammograms. We 

guarantee that the number of malignant mammograms is the same 

as the number of benign mammograms. 

2.2.2 Training and classification details based on 

CNN 
CNNs have been successfully applied in image classification and 

object location after Krizhevsky et al. achieved state-of-the-art 

performance in the ImageNet Large-Scale Visual Recognition 

Challenge [11]. A CNN model contains three main components: a 

convolution layer, pooling layer, and fully connected layer. Each 

layer has a different task. The convolutional layer is composed of 

several small matrices or “kernels” that are convolved throughout 

the entire input image as filters, achieving the feature extraction. 

Pooling layers minimize the dimensions of the feature map 

generated by the convolution layers, and a fully connected layer 

classifies which category the input image belongs to using the 

feature maps. 

Since the mini-MIAS is not a large dataset, we didn’t build a very 

new deep CNN model to avoid overfitting. The models created 

have the maximum of 10 layers. In contrast, some very deep CNN 

models such as ALEXNET and VGG16 that achieve state-of-the-

art in many classification areas were also trained. To measure how 

the network structure such as depth and dropout method affect the 

performance of the model, we first evaluate the architecture with 

two convolutional layers and two max-pooling layers with a fully 

connected layer. This architecture is referred to as CNN-2 in the 

experiments. Meanwhile, we add the dropout strategy ( Srivastava 

et al., 2014 ) [12] in the fully connected layer with p = 0.7 in 

CNN-2, referred to as CNN-2d. Using the work of Ciresan et al. 

[13], we adopt the smaller convolution size and deeper network 

strategy, adding two additional convolutional layers to CNN-2 

with a reduced filter size from 25x25 to 3x3. This is referred to as 

CNN-4. Meanwhile, we adopt the dropout strategy in the fully 

connected layer with p = 0.7, referred to as CNN-4d, and the 

structure is shown in Fig. 4. These four CNN model parameters 

are described in Table 1. And we report the number of parameters 

for each configuration in Table 2. In spite of a large depth, the 

number of weights in the net is not greater than the number of 

weights in a shallow net with larger convolutional layer width. 

We implemented the network with the Tensorflow framework, 

which takes advantage of GPU technology to obtain up to 140 

times speedup with respect to GPU implementations. This 

property makes it feasible in the training of architecture with 

millions of parameters. All experiments were implemented on a 

workstation with two NVIDIA Titan X GPU with 24 GB memory 

each. Based on our implementation and our configuration, the 

CNN-4d model took 0.4ms to process every image during testing. 

We employed stochastic gradient descent (SGD) with RMSProp 

[14], an adaption of R-Prop for SGD with Nesterov momentum 

[15]. We used the uniform weight filler, with a learning rate of 

0.001. To address the strong class imbalance, samples were 

randomly chosen in the augmented dataset, where a benign 

instance is the same size as a malignant instance in each mini 

batch.  

To evaluate the performance and discriminative power of the 

CNN model, measurements for the overall classification accuracy, 

sensitivity, and specificity were calculated as follows: 

TP TN
Accuracy

TP TN FP FN



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                  (4) 

TP
Sensitivity

TP FN




                            (5) 

TN
Specificity

TN FP




                            (6) 

where TP, FN, TN and FP represent the true positives, false 

negatives, true negatives, and false positives, respectively. 

 

Figure 4. An illustration of the network, the proposed CNN-4d network has 3x3 local kernels and RELU as activation function in 

the first and second convolution layer followed by 2x2 pooling layer without overlapping. Then a fully connected layer with 1024 

units with RELU activation and a fully connected layer with 64 units is stacked to finally add a softmax classifier 



Table 1. CNN configurations (shown in columns). The depth 

of increases from the left (CNN-2) to the right (CNN-4d). The 

convolutional layer parameters are donated as 

“conv<receptive field size>-<number of channels>”. The 

RELU activation function is not shown for brevity. 

CNN Configurations 

CNN-2 CNN-2d CNN-4 CNN-4d 

5 weight 

layers 

5 weight 

layers 

7 weight 

layers 

7 weight 

layers 

Input (200x200x3 RGB image) 

conv25-32 

 

conv25-64 

 

conv3-32 

conv3-16 

conv3-32 

conv3-16 

max-pool 

conv25-16 conv3-32 conv3-32 

conv3-16 

conv3-32 

conv3-16 

max-pool 

FC-1024 FC-1024 

(Dropout rate-

0.7) 

FC-1024 FC-1024 

(Dropout rate-

0.7) 

FC-64 FC-64 

(Dropout -0.7) 

FC-64 FC-64 

(Dropout -0.7) 

FC-2 

soft-max 

 

3. RESULTS and DISCUSSION 

3.1 Learned features 
Recall that the CNN weights in the convolution layer and 

maxpool layer worked as filters over the image. Thus, we exact 

the output feature map and visualize them. Fig. 5 shows the output 

of the convolution layer in CNN-4d. This image exposes a set of 

edges in different orientations, as well as some texture patterns. 

We find that the saliency regions match the arthritic lesions that 

were assessed by the physicians to make the diagnostic decision, 

therefore visually proving the diagnostic validity of the CNN-4d 

model. It also reflects that the CNN-4d extracts the relevant 

information from the images to our problem, using the same 

information that physicians use to make the diagnostic decision. 

 

Figure 5. Examples of output feature maps of convolution 

layers. The top left image the origin input image, the others 

are the typical feature maps output of convolution layers. 

Table 2. Number of parameters (in millions). 

Network CNN-2 CNN-

2d 

CNN-4 CNN-

4d 

Number of 

parameters/million 
41.41 41.41 41.01 41.01 

 

3.2 Classification results 
The training group consisted of 547 images, including 275 benign 

and 272 malignant mammographic images. The test group 

consisted of 137 images, including 73 benign and 64 malignant 

mammographic images. In Table 3, the confusion matrix obtained 

using CNN-4d as the feature extractor is shown. Next, the 

sensitivity and specificity of cases can be calculated as follows. 

Table 3. Confusion matrix for augmented MIAS test set 

predictions and feature extraction using CNN-4d 

 Predict 

Benign Malign Total 

 A
ct

u
a

l Benign 64 9 73 

Malign 6 58 64 

Total 70 67 137 

 

The CNN-4d achieved a sensitivity of 90.63% and specificity of 

87.67%. To study the effect of the dropout strategy, we compared 

the results of CNN-4 with CNN-4d, and found that the training 

accuracy of CNN-4 was 98.90%, however its testing accuracy was 

only 86.13%. While the training accuracy of CNN-4d was 93.43%, 

and its testing accuracy was 89.05%. This corresponds to 128 and 

122 well-classified examples, taking into account the total number 

of 137. Thus, without dropout, the training accuracy is much 

higher than the test accuracy, indicating that the classifier may be 

overfitting the training data. CNN-4d has stronger generalization 

abilities than CNN-4. Results show that this approach of using a 

dropout strategy in fully connected layers decreases the level of 

overfitting and obtains a better performance in classifying 

mammograms. 

Table 4 shows the diagnostic performance corresponding to the 

different CNN models including ALEXNET, VGG16, CNN-2, 

CNN-2d, CNN-4, and CNN-4d.In order to study the influence of 

the depth of the CNN structure, the accuracy, sensitivity, and 

specificity of the CNN-2d and CNN-4d were compared. As shown 

in Table 4, CNN-4d obtained higher accuracy (89.05%) than 

CNN-2d (75.91%), higher sensitivity (90.63%) than CNN-2d 

(90.48%), and higher specificity (87.67%) than sensitivity CNN-

2d (65.51%). Results show that smaller filter   sizes but deeper 

CNN have better performance in classifying mammograms, for 

the reason that deeper CNN with smaller filter can express the 

more complex nonlinear relationship with the same size of 

parameter with bigger filter with shallower CNN structure.  

We also tested the classical very deep CNN models, which 

achieved state-of-the-art in image classification and object 

detection, such as ALEXNET, VGG16. These two model results 

were shown in Table 4. Results shows the very deep CNN models 

obtained a poor performance, for example, the VGG16 just 

obtained the accuracy of 0.6977, the sensitivity of 0.7437, we 

believe that the MIAS dataset is too small to trained a very deep 

CNN model such as VGG16 and ALEXNET, thus the parameters 

cannot be trained completely in very deep models. A series of 



experiments were also conducted to validate that the CNN-4d 

model is the best one, as the models which are deeper than CNN4-

d owned worse performance than CNN4-d, for the reason that the 

MIAS dataset is not big enough and it is improper to train CNN 

models where depth is higher than 4.  

Table 4. Diagnostic performance of different classification 

models. The proposed CNN-4d achieved superior 

performance in terms of the four measurements. The best 

measurements were highlighted in bold. 

 Test Dataset Training 

Dataset 

Accura

cy 
Sensitivity 

Specifi

city 

Mean ± std 

(Accuracy) 

ALEXNE

T 

0.6558 0.6775 0.6979 0.7501±0.02 

VGG16 0.6977 0.7437 0.6963 0.8031±0.02 

CNN-2 0.5328 0 1 0.5027±0.05 

CNN-2d 0.7591 0.9048 0.6551 0.8647±0.05 

CNN-4 0.8613 0.7826 0.9259 0.9890±0.03 

CNN-4d 0.8905 0.9063 0.8767 0.9343±0.03 

 

4. CONCLUSION 
In this study, a novel deep learning model in the form of a CNN 

trained on the mini-MIAS is proposed to classify abnormalities, 

both benign and malignant. To enhance the characteristics of the 

image and improve the performance of classification, a 

preprocessing algorithm is proposed that uses a series of 

preprocessing methods, such as cropping, GCN, local histogram 

equalization, and balancing preprocessing. The CNN model takes 

the ROI of the raw image as input, achieving the feature learning 

and classification of abnormalities. To satisfy the mammographic 

image, a data augmentation method is proposed to ameliorate data 

scarcity and prevent overfitting. Specific experiments are 

conducted to explore the influence of the CNN layer structure and 

kernel, or activate the function on the classification performance. 

CNN-4d has the best performance with a training accuracy 93.43% 

and testing accuracy of 89.05%. The experiment also shows that 

dropout strategy in fully connected layers decreases the level of 

overfitting and obtains better performance at classification. The 

same model complexity with a smaller filter size but deeper CNN 

has a better performance. The results inspire a specific design 

strategy of CNN structures that satisfies the classification of 

mammographic images. The model proposed in this study 

improves the accuracy and stability in mini-MIAS breast 

mammographic image classification. 
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